ࡱ> LNKO R(:bjbjgQgQ4>;e;e ;;;;;OOO8,O$t*!F9;;;4@qqqV;;qqqqrQLqV0qp!$qp!$$;q\q+F$ : ,g~_lIQ1{N Molecular rotational spectroscopy utilizes electromagnetic radiation, typically in the microwave region, to measure the transition energy between the quantized energy levels that come from the rotational kinetic energy of a polar molecule in gas phase. The rotational energy levels and spectral patterns are determined by the principal moments-of-inertia of the molecule and are, therefore, directly related to the mass distribution relative to the molecular center-of-mass. The fact that the rotational spectroscopy is related to the mass distribution, and not just the mass number, makes molecular rotational spectroscopy ideally suited for structure analysis. Depending on the frequency range of a single spectral acquisition event, the technique has been divided into narrowband and broadband rotational spectroscopy since the invention of the broadband chirped pulse Fourier transform microwave (CP-FTMW) spectroscopy in 2008 by Brooks H. Pate et al. The narrowband spectroscopy usually covers around 1 MHz spectral width while the broadband can measure over 10 GHz frequency range in one shot. In our lab, we have built up the broadband CP-FTMW spectrometer working in the frequency range of 2-8 GHz. A linear sweep chirped pulse (several microseconds) from 2 to 8 GHz is generated by an arbitrary waveform generator (AWG, 25GS/s) and then amplified by traveling-wave tube amplifier (TWTA, 300 watts). The amplified microwave pulses are broadcasted into vacuum chamber by a horn antenna, then interact with the cold molecular beam and create macroscopic polarization in the sample by aligning the molecular dipole moments. After the excitation pulse dissipates, the radiation waves will be coherently emitted by the rotationally excited molecules. This coherent emission eventually decays through Doppler dephasing or collisions. The broadband free-induction decay (FID) signals are collected by another horn antenna and accumulated by using a high-speed oscilloscope (100GS/s). The molecular rotational spectrum is produced by subsequent Fourier transform analysis of the time-domain signals. Our main research focuses on the use of broadband rotational spectroscopy to determine the structures of molecular clusters. Cold clusters at ground vibrational states can be generated by expanding pulsed jet into the vacuum to form a molecular beam. The molecular aggregation is driven by non-covalent interactions such as hydrogen bonding and London dispersion forces. In the molecular beam, a wide range of cluster sizes are produced and there can be many isomeric structures for each cluster size. One of the biggest challenges for the analysis of those clusters in gas phase is to spectrally distinguish or spatially separate the target cluster from others. Rotational spectroscopy can provide the highest spectral resolution of molecular spectroscopy techniques used for chemical analysis. As a result, it has no trouble resolving the spectra from all cluster geometries present simultaneously in the sample. Another research interest is the dynamics of nuclear quantum tunneling in clusters. Quantum tunneling plays an essential role in physical phenomena. Electronic tunneling is well-known. Nuclei are much more massive than an electron, so it has a much lower probability of tunneling. When the configuration of molecular cluster undergoing symmetric conversion and the nuclei transferring in the symmetric well potential, these low frequency vibrations will couple with the overall molecular rotation leading to splitting of rotational energy levels. Therefore, information about the nuclear tunneling is encoded in the rotational spectra. Besides above-mentioned research topic, many other information can be obtained from rotational spectroscopy, such as nuclear hyperfine structure, charge distribution and so on. Recently, the application of rotational spectroscopy has been extended to chiral analysis. Rotational spectroscopy is a powerful tool for studying molecules, we are keeping efforts on developing this technique to reveal more secrets of molecules. RP[lRIQ1/f)R(u_llk5uxlKmϑlv-Ng'`RP[vlR~KNvÍ0RP[lR~NSIQ1/f1uRP[lR`ϑQ[v vQNRP[v(ϑR^vcvsQ0Vdk lRIQ1/fxvzRP[~gvt`]wQ0 9hncUS!kIQ1ǑƖvsv[^ lRIQ1KmϑňnSNR:N z&^ N [&^ $N'Y{|02008t^ V_ T<\N'Yf[Brooks H. PateI{NSfNAU~U Q-P̑SSbc_lIQ1N ORP[IQ1xvzWSuNi}T'`v9eS0 O~v z&^ _lIQ1N!kKmϑS6eƖ1MHz]Ss[^vOS ev [&^ _lIQ1ňnN!kSNKmϑǏ10GHz[^vIQ1OS0 2021t^ bN;NxS-d^N [&^ AU~U Q-P̑SSbc_lIQ1ňn0vMRňnsvV/f2-8GHz0dksV;N(uN'Y(ϑb:\[RP[vxvz0vQ]\OSt/fHQ )R(u25GS/svNalb_SuhVNuNk [:NQ_y sv2-8GHzv~'`kbOSAU~U Q T~Ǐ300tLl{>e'YhV 6qT1uN*N[&^USb_)Y~S0RwzzT-N0(WwzzT-N _lN~XQtSvRP[vN\O(u TeoSRP[v N TlRϑP[`0(W_l Q\mceT YN N TlRoS`vRP[ÍVvQRYϑP[` TeTYS\5uxlOS0dkOSwzzTSOQSNzv[&^US)Y~c6e ~ǏNOjV>e'YhVT O~100GS/sv:ylhV6eƖv^s^GW0gT6eƖveWOS~ǏP̑SSbcb_b10 bNv;NvxvzeT/f)R(u[&^AU~U Q-P̑SSbc_lIQ1ňnxvzRP[V|~g0)R(uXRP[_gb/gSN\lvRP[v/cl)n^_MNOQk Nu'YϑYN/cRW`vRP[V|0ُNRP[V|1u"l.0&OferceRI{^qQN.~T(WNw0RP[_g-NS+T N T:\[vRP[V| kN*N:\[vV|SO gYygWga0Vdk YUONIQ1-NR[N bYUO(Wzz Nb N TvV|Ryۏ R+RۏLKmϑ b:N[ NvN'Y0RP[lRIQ1wQ ggؚvRs YnpfvR N TgWga0 TMO }SNRP[ Vdk Y_}Y0W㉳QN N0 bNxvzvSYN*N/fV|-Nv8hϑP[zHe^0ϑP[z/fNyW,gvirtsa ^lX[(WNT*NxvzW0vkN5uP[vϑP[zHe^ wQ g'Y(ϑvSP[8hvϑP[zSuisv[NO bN[[vN؏܏܏ NY0(WlvRP[V|-N SP[8hvϑP[zЏROߍV|vteSOlRSu&T [vQlR~ˆR VdklRIQ1-NS+TN~vϑP[zOo`0bNSNN-N_0R|nxv~ˆRSzs ۏ c[QV|-NSP[8hyvS^Rb0 dNN NxvzQ[ RP[lRIQ1_NSN(uNvQNebxvz kYSP[8h|~~g05uwR^ I{0*geg bN؏\)R(ulRIQ1egxvzRP[Kb'`0ϑP[`cI{yf[0 NgkSf 7u 1988t^u 2014.11-2017.10 a'Y)RZSm<\N'Yf[Sf[| ZSX 2017.01-2017.04 sYr]eKQ'Yf[irtSf[| f[ 2017.11-2018.10 a'Y)RZSm<\N'Yf[Sf[| ZSXT 2018.11-2021.02 _V5uP[ TekRhVZ\`(   # $ % 2    J Q   _ ` ɸyhV#hhP6CJOJQJ^JaJ h6hPCJOJQJ^JaJ hT hPCJOJQJ^JaJhPCJOJQJ^JaJ h4hPCJOJQJ^JaJhPCJOJQJ^JaJo( h"*hPCJOJQJ^JaJ#hPhP5CJOJQJ^JaJ&hPhP5CJOJQJ^JaJo( hP5CJOJQJ^JaJo(! a KZ B""""""#B###0000gd3N $ a$gdP $ a$gdP    ` a BClstw6IJKDJñԠԏԏԏԏԏԏԏ~ԏԏԱmmmm hA hPCJOJQJ^JaJ h:whPCJOJQJ^JaJ h^hPCJOJQJ^JaJ hMhPCJOJQJ^JaJ#hm-hP5CJOJQJ^JaJ h hPCJOJQJ^JaJhPCJOJQJ^JaJh@CJOJQJ^JaJh@CJOJQJ^JaJo(&JSTASsytv02q"3Y (Dx|ⴢh]NCJOJQJ^JaJo( h=hPCJOJQJ^JaJ#hDhP5CJOJQJ^JaJhP5CJOJQJ^JaJh 6CJOJQJ^JaJ hA hPCJOJQJ^JaJhPCJOJQJ^JaJhPCJOJQJ^JaJo(1$d~ $0<@HJfjnp @"B"""""""### #@#B#D#L#N#˽ˮ˽˽˽˟˽˟˽˽˽˟˽˽ˍ|hv h3No(h3Nh6]#hDhPCJOJQJ^JaJo(h~!CJOJQJ^JaJo(h]NCJOJQJ^JaJo(hPCJOJQJ^JaJhPCJOJQJ^JaJo(#hDhP5CJOJQJ^JaJ&hDhP5CJOJQJ^JaJo(0N#\#^#`#r#|##########000000r11|23446F7\89 : ::::::: :&:(:޺hCjhCUh3Nh2o(h2OJQJ^Jh2h2mHsH h2h2h2 h2o(U hvo( hUo( h3No(hvh3N)xvz-N_ ZSXT Nh\O 1. Double proton transfer across a table: the formic acid dimer fluorobenzene complex. Weixing Li*, Denis S. Tikhonov, and Melanie Schnell*, Angew. Chem. Int. Ed. 2021, 60, 25674  25679. 2. Unlocking the water trimer loop: isotopic study of benzophenone-(H2O)1 3 clusters with rotational spectroscopy. Weixing Li, Maria Mar Quesada-Moreno, Pablo Pinacho, and Melanie Schnell*. Angew. Chem. Int. Ed. 2021, 60, 5323-5330. 3. A general treatment to study molecular complexes stabilized by hydrogen-, halogen-, and carbon-bond networks: experiment and theory of (CH2F2)n"""(H2O)m. Camilla Calabrese#, Weixing Li#, Giacomo Prampolini, Luca Evangelisti, Iciar Uriarte, Ivo Cacelli, Sonia Melandri, Emilio J. Cocinero*. Angew. Chem. Int. Ed. 2019, 58, 8437-8442. 4. The barrier to proton transfer in the dimer of formic acid: a pure rotational study. Weixing Li, Luca Evangelisti, Qian Gou, Walther Caminati*, Rolf Meyer. Angew. Chem. Int. Ed. 2019, 58, 859-865. 5. Theory meets experiment for noncovalent complexes: the puzzling case of pnicogen interactions. Weixing Li, Lorenzo Spada*, Nicola Tasinato*, Sergio Rampino, Luca Evangelisti, Andrea Gualandi, Pier Giorgio Cozzi, Sonia Melandri, Vincenzo Barone, Cristina Puzzarini*. Angew. Chem. Int. Ed. 2018, 57, 13853-13857.     01h367 :::::::":$:&:(: dgdPgd221h:pWK. A!n"n#$n% Zh[JY*Y\wZh[JY*Y\wZh[JY*Y\wZh[JY*Y\wZh[JY*Y\wZh[JY*Y\wZh[JY*Y\wZh[JY*Y\wZh[JY*Y\wZh[JY*Y\wZh[JY*Y\wZh[JY*Y\wZh[JY*Y\wZh[JY*Y\wZh[JY*Y\wZh[JY*Y\wZh[JY*Y\wZh[JY*Y\wZh[JY*Y\wZh[JY*Y\wZh[JY*Y\wZh[JY*Y\wZh[JY*Y\wZh[JY*Y\wZh[JY*Y\wZh[JY*Y\wZh[JY*Y\wZh[JY*Y\wZh[JY*Y\wZh[JY*Y\wZh[JY*Y\wZh[JY*Y\wZh[JY*Y\ww666666666vvvvvvvvv666666>6666666666666666666666666666666666666666666666666hH66666666666666666666666666666666666666666666666666666666666666666p62&6FVfv2(&6FVfv&6FVfv&6FVfv&6FVfv&6FVfv&6FVfv8XV~ 0@ 0@ 0@ 0@ 0@ 0@ 0@ 0@ 0@ 0@ 0@ 0@ 0@ 0@6666$OJPJQJ^J_HmH nHsH tHF`F cke dCJ_HaJmH nHsH tH$A $ ؞k=W[SOBiB 0nfhGRU1a$N% ʣꂣKЛjVkUDRKQj/dR*SxMPsʧJ5$4vq^WCʽ D{>̳`3REB=꽻Ut Qy@֐\.X7<:+& 0h @>nƭBVqu ѡ{5kP?O&Cנ Aw0kPo۵(h[5($=CVs]mY2zw`nKDC]j%KXK 'P@$I=Y%C%gx'$!V(ekڤք'Qt!x7xbJ7 o߼W_y|nʒ;Fido/_1z/L?>o_;9:33`=—S,FĔ觑@)R8elmEv|!ո/,Ә%qh|'1:`ij.̳u'k CZ^WcK0'E8S߱sˮdΙ`K}A"NșM1I/AeހQתGF@A~eh-QR9C 5 ~d"9 0exp<^!͸~J7䒜t L䈝c\)Ic8E&]Sf~@Aw?'r3Ȱ&2@7k}̬naWJ}N1XGVh`L%Z`=`VKb*X=z%"sI<&n| .qc:?7/N<Z*`]u-]e|aѸ¾|mH{m3CԚ .ÕnAr)[;-ݑ$$`:Ʊ>NVl%kv:Ns _OuCX=mO4m's߸d|0n;pt2e}:zOrgI( 'B='8\L`"Ǚ 4F+8JI$rՑVLvVxNN";fVYx-,JfV<+k>hP!aLfh:HHX WQXt,:JU{,Z BpB)sֻڙӇiE4(=U\.O. +x"aMB[F7x"ytѫиK-zz>F>75eo5C9Z%c7ܼ%6M2ˊ 9B" N "1(IzZ~>Yr]H+9pd\4n(Kg\V$=]B,lוDA=eX)Ly5ot e㈮bW3gp : j$/g*QjZTa!e9#i5*j5ö fE`514g{7vnO(^ ,j~V9;kvv"adV݊oTAn7jah+y^@ARhW.GMuO "/e5[s󿬅`Z'WfPt~f}kA'0z|>ܙ|Uw{@՘tAm'`4T֠2j ۣhvWwA9 ZNU+Awvhv36V`^PK! ѐ'theme/theme/_rels/themeManager.xml.relsM 0wooӺ&݈Э5 6?$Q ,.aic21h:qm@RN;d`o7gK(M&$R(.1r'JЊT8V"AȻHu}|$b{P8g/]QAsم(#L[PK-![Content_Types].xmlPK-!֧6 0_rels/.relsPK-!kytheme/theme/themeManager.xmlPK-!g theme/theme/theme1.xmlPK-! ѐ' theme/theme/_rels/themeManager.xml.relsPK] &>  JN#(:0(:@ @H 0(  0(  B S  ? (-FGpq;<[]oxuy T[jqzz~QY67 CF33333J_u   S^&' ~! 63NP@UfgvC]N6]2d*@HWKp @400@000UnknownG.[x Times New Roman5Symbol3. .[x ArialA$BCambria Math7..{$ Calibri?|8I{~DengXian9,|8I{~ LightC.,.{$ Calibri Light qhlKmE$ /$ /?!%),.:;>?]}    & 0 2 3 : !6"000 0 0 0000006:>@DZ\^ =@\]^$([{  0 0 000000Y[];[n2 KqHP  $Pfg2!xx WeixingWeixing-J _(Flo7:[oU#uz   0 @\P)` p 1 $ 0@ P`pM i Z'`IZ' Oh+'0l  ( 4 @LT\dWeixing Normal.dotmWeixing3Microsoft Office Word@ޡ @#d@N$ ՜.+,0 X`lt| /   !"#$%&')*+,-./0123456789:<=>?@ABDEFGHIJMRoot Entry F0rOData  1Table($WordDocument4>SummaryInformation(;DocumentSummaryInformation8CCompObjn  FMicrosoft Word 97-2003 ĵ MSWordDocWord.Document.89q